

HERA s.p.a. SOT MODENA

Via Cesare Razzaboni 80 SERVIZIO ENERGIA E CICLO IDRICO

1.4 RETE DISTRIBUZIONE GAS METANO – CARATTERISTICHE E SEZIONI DI POSA

Aggiornamento settembre 2012

A) NORMATIVA SULLE CONDOTTE GAS

DISPOSIZIONI NORMATIVE PRINCIPALI

Legge 1083 6/12/1971

Norme per la sicurezza dell'impiego del gas combustibile

Decreto Ministeriale 37 22/01/2008

Regolamento concernente l'attuazione dell'articolo 11quaterdecies, comma 13, lettera a) della legge n. 248 del 2 dicembre 2005, recante riordino delle disposizioni in materia di attivita' di installazione degli impianti all'interno degli edifici

Decreto Ministeriale 16/04/2008

Regola tecnica per la progettazione, costruzione, collaudo, esercizio e sorveglianza delle opere e dei sistemi di distribuzione e di linee dirette del gas naturale con densità non superiore a 0,8

A) NORME DI PRODOTTO

UNI EN 1057- novembre 1997 "*Rame* e leghe di rame. Tubi rotondi di rame senza saldatura per acqua e gas nelle applicazioni sanitarie e di riscaldamento"

UNI EN 1359 – settembre 2001 "Misuratori di gas a membrana"

UNI EN 1555-2 – agosto 2004 "Sistemi di **tubazioni** di materia plastica per la distribuzione di gas combustibili - **Polietilene (PE)** - Parte 2: Tubi'

UNI 7988 + FA 1/90 – marzo 1986 "Contatori di gas. Prescrizioni di sicurezza e metrologiche"

UNI 9099 - settembre 1989 "*Tubi in acciaio* impiegati per tubazioni interrate e sommerse. Rivestimento esterno di polietilene applicato per estrusione"

UNI 9734 – gennaio 1991 "Dispositivi di intercettazione per condotte di gas. Valvole di acciaio con otturatore a sfera"

A) NORME DI PRODOTTO (segue)

UNI EN 10208-2 - luglio 1998 "*Tubi di acciaio* per condotte di fluidi combustibili - Condizioni tecniche di fornitura - Tubi della classe di prescrizione B"

UNI EN 10240 – ottobre 1999 "Rivestimenti protettivi interni e/o esterni per tubi di acciaio - Prescrizioni per i rivestimenti di **zincatura** per immersione a caldo applicati in impianti automatici"

UNI EN 10255 – gennaio 2005 "**Tubi di acciaio** non legato adatti alla saldatura e alla filettatura – Condizioni tecniche di fornitura"

UNI 10284 – dicembre 1993 "Giunti isolanti monoblocco 10 < DN < 80 con PN 10"

UNI 10285 – dicembre 1993 "Giunti isolanti monoblocco 80 < DN < 600 con PN 16"

B) NORME DI PROGETTAZIONE, COSTRUZIONE, INSTALLAZIONE E COLLAUDO

UNI 8827 + FA1/91 - ottobre 1985 "Impianti di riduzione finale della pressione del gas funzionanti con pressione a monte compresa fra 0,04 e 5 bar. (Progettazione, costruzione e collaudo)"

UNI 9034 – maggio 2004 "**Condotte di distribuzione** del gas con pressioni massime di esercizio minore o uguale a 5 bar. Materiali e sistemi di giunzione"

UNI 9036 – dicembre 2001 "Gruppi di misura con contatori volumetrici a pareti deformabili con pressione di esercizio minore o uguale a 40 mbar. Prescrizioni di installazione"

UNI 9165 – aprile 2004 "**Reti di distribuzione** del gas - Condotte con pressione massima di esercizio minore o uguale a 5 bar - Progettazione, costruzione, collaudo, conduzione, manutenzione e risanamento"

UNI 9167 – aprile 1988 "Impianti di ricezione e prima riduzione del gas naturale - Progettazione, costruzione, collaudo, conduzione, manutenzione e risanamento"

B) NORME DI PROGETTAZIONE, COSTRUZIONE, INSTALLAZIONE E COLLAUDO (segue)

UNI 9860 – febbraio 2006 "*Impianti di derivazione d'utenza* del gas. Progettazione, costruzione e collaudo"

UNI 10619 – luglio 1997 "Impianti di riduzione e misurazione del gas funzionanti con pressione a monte massima di 12 bar per utilizzo industriale e assimilabile e per utilizzo civile con pressione a valle compresa tra 0,04 e 0,5 bar. Progettazione, costruzione e collaudo"

UNI EN 12279 – maggio 2003 "Installazioni per la **regolazione della pressione** del gas sulle reti di distribuzione – Requisiti funzionali"

C) ALTRE NORME

UNI 10576 – aprile 1996 "Protezione delle tubazioni gas durante i lavori nel sottosuolo"

UNI 10738 – maggio 1998 "Impianti alimentati a gas combustibile per uso domestico **preesistenti alla** data del 13 marzo 1990 - Linee guida per la verifica delle caratteristiche funzionali"

CLASSIFICAZIONE DELLE RETI GAS / 1

Le reti e gli impianti di derivazione di utenza per gas metano sono classificati in base al D.M. 16/04/2008:

1a specie	Impianti con pressione di esercizio			Pe	> 24 bar
2a specie	Impianti con pressione di esercizio	12 bar	<	Pe	≤ 24 bar
3a specie	Impianti con pressione di esercizio	5 bar	<	Pe	≤ 12 bar
4a specie	Impianti con pressione di esercizio	1,5 bar	<	Pe	≤ 5 bar
5a specie	Impianti con pressione di esercizio	0,5 bar	<	Pe	≤ 1,5 bar
6a specie	Impianti con pressione di esercizio	0,04 bar	<u><</u>	Pe	≤ 0,5 bar
7a specie	Impianti con pressione di esercizio			Pe	≤ 0,04 bar

CLASSIFICAZIONE DELLE RETI GAS / 2

Condotte di 1a, 2a, 3a specie = condotte di Alta Pressione (AP)

Condotte di 4a, 5a, 6a specie = condotte di **Media Pressione (MP)**

Condotte di 7a specie = condotte di Bassa Pressione (BP)

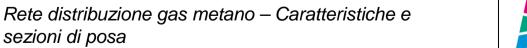
B) STANDARDIZZAZIONE HERA SOT MODENA

TUBAZIONI PER CONDOTTE GAS / 1

Tubazioni interrate

- ➤ Tubazioni in **acciaio** UNI EN 10208-1, con rivestimento esterno in PE UNI 9099 (estruso a calza) tipo R3R (triplo strato rinforzato); giunzioni saldate
- Tubazioni in **polietilene** tipo S5; giunzioni saldate (da utilizzarsi solo in aree dove non sono presenti condotte gas in acciaio a cui collegarsi)

TUBAZIONI PER CONDOTTE GAS / 2


Tubazioni aeree MP

> Tubazioni in acciaio UNI EN 10208-1, verniciate esternamente; giunzioni saldate

Tubazioni aeree BP

sezioni di posa

> Tubazioni in acciaio UNI EN 10255, esternamente zincate a caldo secondo UNI EN 10240 qualità A.1; giunzioni filettate (materiale di tenuta: PTFE)

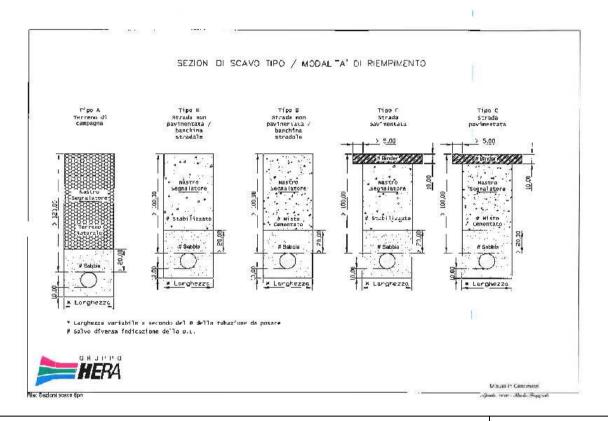
TUBAZIONI PER ALLACCIAMENTI GAS

> in derivazione dalle condotte di ghisa e di PE, e solo in 7°specie (BP): allacciamenti in PE

➤ in derivazione dalle condotte di acciaio, e comunque in tutti i casi diversi dal punto precedente: **allacciamenti in acciaio**

SEZIONI DI POSA CONDOTTE STRADALI

- o Profondità di posa non inferiore a 1 mt (tra estradosso tubo e p.c.)
- o Letto di posa, rinfianco e reinterro in sabbia attorno alla tubazione min. 15 cm per parte
- o <u>Per i riempimenti attenersi alle prescrizioni degli</u> <u>Enti proprietari della strada</u>
- o Modalità tipiche:


SCHEMI TIPOLOGICI DI ALLACCIAMENTI GAS

Hera SOT Modena ha definito le caratteristiche standard dimensionali e di tracciato dei propri allacciamenti

Sono stati redatti oltre 60 schemi e sezioni di posa che rappresentano questi standard nelle diverse casistiche

SEZIONI DI POSA CONDOTTE STRADALI

PROFONDITA' DI POSA

Profondità di posa delle condotte (<u>distanza tra</u> <u>estradosso della condotta e piano finito</u>) non inferiore a:

0,60 m per le condotte gas BP

0,90 m per le condotte gas MP

(anche per gli allacciamenti – vd. UNI 9165 e 9860)

Se non possibile (es.: sovrappasso di sottoservizio): necessari accorgimenti tecnici per proteggere le condotte da transito e operazioni dei mezzi di cantiere e da traffico stradale (es.: beole in cls)

ATTRAVERSAMENTI E PARALLELISMI

Per <u>sottopassi di sottoservizi di notevole larghezza</u> occorre posa tubo guaina di PVC UNI 1452 / acciaio per una lunghezza sufficiente a garantirne la sfilabilità in interventi di manutenzione.

Per <u>intersezioni/parallelismi</u> (d <= 50 cm) tra reti gas MP e sottoservizi non in pressione (reti fognarie, tubi guaina per elettricità, telefonia), occorre inserire tubo guaina di PVC UNI 1452 almeno 1 mt prima e dopo in caso di sovrappassi, almeno 3 mt prima e dopo per sottopassi.

1) PORTATA DI PROGETTO

- *Utenze domestiche:* secondo la tabella riportata di seguito
- Utenze industriali (o comunque altre utenze): sulla base della potenzialità termica richiesta

NOTA: Per ricavare la portata occorre dividere la potenzialità termica per il potere calorifico inferiore (P.C.I.) del metano:

- $Q(Sm^3/h) = potenzialità (kcal/h) / (8.250 kcal/Sm^3)$
- $Q(Sm^3/h) = potenzialità(kW)/(9,6 kW/Sm^3)$

Portate di dimensionamento (Sm³/h) e coefficienti di contemporaneità per utenze civili					
	Coeff.	Uso cottura, acqua calda			
	Contemp.	e riscaldamento		Uso cottura e acqua calda	
N° utenze	•	Portata totale	Portata unit.	Portata totale	Portata unitaria
1	1	6	6	2,3	2,3
2	0,75	9	4,5	3,4	1,72
3	0,65	11,7	3,9	4,5	1,49
4	0,6	14,4	3,6	5,5	1,38
5	0,55	16,5	3,3	6,3	1,26
6	0,5	18	3	6,9	1,15
da 6 a 9	0,5		3		1,15
10	0,45	27	2,7	10,3	1,03
da 10 a 14	0,45		2,7		1,03
15	0,4	36	2,4	13,8	0,92
da 15 a 29	0,4		2,4		0,92
30	0,35	69	2,1	24,2	0,8
da 30 a 49	0,35		2,1		0,8
50	0,3	90	1,8	34,5	0,69
da 50 a 99	0,3		1,8		0,69
100	0,2	120	1,2	-	-
da 100 a 199	0,2		1,2		-
200	0,18	220	1,1	-	-
da 200	0,18		1,1		-

2) CALCOLO DELLE PERDITE DI CARICO

Perdite concentrate

in via forfetaria per tenere conto di queste perdite è sufficiente aggiungere alla lunghezza effettiva della condotta una lunghezza convenzionale pari a m 6,00

Perdite distribuite

Si calcolano con formule sperimentali di calcolo, le più adottate sono le formule di **Renouard**:

FORMULA DI RENOUARD PER RETI GAS A BASSA PRESSIONE

 $Pa - Pb = 232 \times 106 \times S \times L \times Q1.82 \times D-4.82$

Pa – Pb = variazione della pressione (in mm H2O) tra l'inizio e la fine della condotta

L = lunghezza della tubazione (km)

Q = portata (Smc/h)

D = diametro interno del tubo (mm)

S = densità del gas combustibile (per il gas naturale la densità è 0.5545 essendo 1 quella dell'aria)

FORMULA DI RENOUARD PER RETI GAS A MEDIA PRESSIONE

 $Pa2 - Pb2 = 48600 \times S \times L \times Q1.82 \times D-4.82$

Pa = pressione **assoluta** iniziale (bar)

Pb = pressione **assoluta** iniziale (bar)

L = lunghezza della tubazione (km)

Q = portata (Smc/h)

D = diametro interno del tubo (mm)

S = densità del gas combustibile (per il gas naturale la densità è 0.5545 essendo 1 quella dell'aria)

3) CALCOLO DELLA VELOCITA' IN CONDOTTA

Q x 353,85
$$V = \text{velocità (m/s)}$$

$$V = ---- Q = portata (Smc/h)$$

Pb
$$\times$$
 Di² Di = diametro interno tubo (mm)

Pb = pressione **assoluta** finale (bar)

Velocità limite da non superare in base alla pressione di esercizio:

Pe > 3,5 bar	25 m/s
1,5 bar < Pe ≤ 3,5 bar	20 m/s
1 bar < Pe ≤ 1,5 bar	15 m/s
0,04 bar < Pe ≤ 1 bar	10 m/s
Pe ≤ 0,04 bar	5 m/s

PROVE E CONTROLLI SULLE CONDOTTE GAS / 1

- durante la posa della condotta: controlli della resistenza dell'isolamento elettrico della condotta (con scintillografo)
- 2. <u>prima della prova di tenuta:</u> **pulizia della condotta** con scovolo (pig)
- 3. prova di tenuta a pressione con le pressioni e i tempi indicati nella tabella seguente

TABELLA RIASSUNTIVA PROVE DI TENUTA CONDOTTE STRADALI GAS

Campo di applicazione	Specie	Tipo di prova	Pressione collaudo	Durata	Norme riferimento prove
MOP < = 0,5 bar	7 ^a e 6 ^a	pneumatica- idrostatica	1 bar	24 h (*)	UNI 9165 DM 16/04/08
0,5 bar < MOP > = 1,5 bar	5 ^a	pneumatica- idrostatica	1,5 MOP	24 H (*)	UNI 9165 DM 16/04/08
1,5 bar < MOP > = 5 bar	4ª	pneumatica- idrostatica	1,5 MOP	24 H (*)	UNI 9165 DM 16/04/08 (**) DM 17/04/08 (**)
5 bar < MOP < = 24 bar	3ª e 2ª	Idrostatica(****)	1,5 MOP	48 h (*) (***)	UNI EN 12007-1/3 UNI EN 1594 UNI EN 12327 DM 16/04/08 (**) DM 17/04/08 (**)
MOP > 24 bar	1 ^a	Idrostatica	1,3 MOP	48 h (*) (***)	UNI EN 1594 UNI EN 12327 DM 17/04/08

^{(*) 4} ore nel caso di condotte aeree di breve lunghezza;

^{(***) 24} ore nel caso di condotte di centrali di decompressione

^(**) Il riferimento allo specifico DM varia in funzione del tipo di condotta (Distribuzione – Trasporto)

^(****) nei casi di riconosciuta difficoltà di esecuzione della prova idrostatica è ammessa la prova pneumatica per brevi tratti (prodotto pressione volume limitato).

TABELLA RIASSUNTIVA PROVE DI TENUTA ALLACCIAMENTI GAS

Tipo impianto	Pressione esercizio	Specie	Condizione impianto	Fluido di prova	Pressione di prova	Durata prova
Interr./ aereo	Pe > 0,5bar	4ª - 5ª	Posato e completo di organo di intercettazione	Aria/gas inerte	1,5 x MOP (**)	Minimo 4 h (*)
Interr./ aereo	0,04< Pe <0,5 bar	6ª - 7ª	Posato e completo di organo di intercettazione	Aria/gas inerte	1 bar	Minimo 4 h (*)
Interrato	Pe ≤ 0,04 bar	7ª	Posato e completo di organo di intercettazione	Aria/gas inerte	1 bar	Minimo 30 min
Aereo	Pe ≤ 0,04 bar	7ª	Posato e completo di organo di intercettazione	Aria/gas inerte	0,1 bar	Minimo 30 min

^(*) se il volume geometrico della tubazione è superiore a 4 mc la durata della prova deve essere di almeno 24 ore:

^(**) MOP = pressione massima d'esercizio.

PROVE E CONTROLLI SULLE CONDOTTE GAS / 2

- prima del collegamento alla rete esistente:
 verifica dell'efficacia della protezione
 catodica sul punto terminale (con tester-prova da eseguire dai tecnici di Hera)
- 5. <u>dopo il collegamento alla rete:</u> **spurgo con gas,** fino ad avere presenza di solo gas metano in rete (verifica con gascromatografo)

