

DISPENSA N. 004

<u>Ingegneria Civile :</u>

Sezione Edile

Corso di Tecnica delle Costruzioni

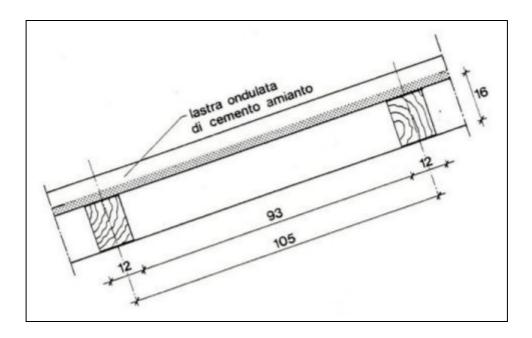
A.D. 2004 Febbraio

Oggetto: Calcolo Pesi propri, 1°.

Elaborato: Esempi di "Calcolo dei pesi propri di vari tipi di solai".

La dispensa contiene:

- <u>01 Lastre Cemento-Amianto e arcarecci di legno</u>.
- <u>02 Lamiera grecata (tipo A55 / P600 HI-BOND)</u>.
- 03 Latero-Cemento (tralicci-pignatte-soletta in cls).


TERRASINI (PA), lì 10-02 2004

IL TECNICO CALCOLISTA

Dott. Ing. Nicolò Gioè

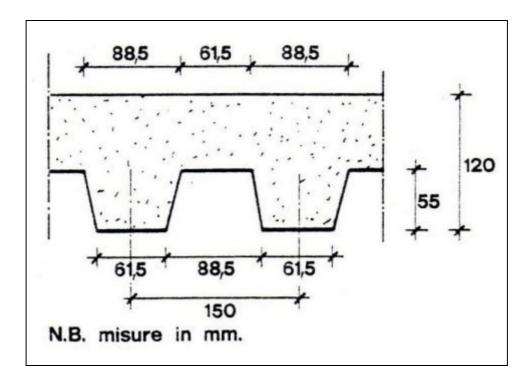
Calcolo dei pesi propri di vari tipi di Solai.

Caso 1° - Solaio di copertura costituito da <u>lastre di cemento amianto e arcarecci di legno</u>.

Il **peso degli arcarecci** può essere considerato uniformemente distribuito.

Il peso P vale perciò:

(1 metro lineare) / (num. arcarecci)*(area di un arcareccio)*(peso specifico legno) = peso


peso arcarecci : =
$$(1:1,05 \text{ m}) * (0,12 \times 0,16) * 6$$
 = $0,11 \text{ KN / m}^2$ = $0,20 \text{ KN / m}^2$

Peso proprio =
$$0.31 \text{ KN} / \text{m}^2$$

oppure = $31 \text{ Kg} / \text{m}^2$

Si ricordi che : $1 \text{ KN / m}^2 \approx 100 \text{ Kg / m}^2$

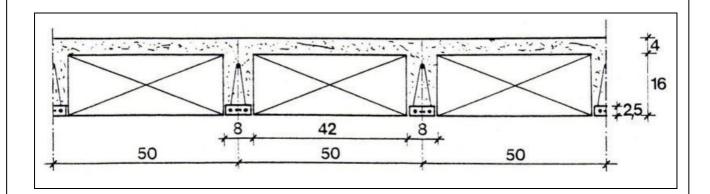
Dove: area arcareccio $\rightarrow Ac = 12 \times 16 = 192 \text{ cm}^2$

Caso 2° - Solaio di copertura costituito da <u>lamiera grecata tipo A 55 / P 600 HI-BOND</u>.

La lamiera ha uno spessore di $\mathbf{s_{lam}} = 1$ mm; il solaio è costituito anche da un getto di conglomerato cementizio armato per una altezza complessiva di $\mathbf{H_{cls}} = 12$ cm.

Il peso P vale perciò:

(1 metro lineare)*(num. scanalature)*(area di una scanalatura)*(peso specifico cls) = peso


cls scanalature : = $(1:0,15 \text{ m}) * [(0,0885+0,0615) \times 0,055] * 2500 = 69 \text{ Kg/m}^2$ cls soletta : = 1 * 0,065 * 2500 = 163 Kg/m^2 lamiera (dai manuali) : = 13 Kg/m^2

Peso proprio $= 245 \text{ Kg/m}^2$ oppure = 2,45 KN/m²

Si ricordi che : $25 \text{ KN} / \text{m}^2 \approx 2.500 \text{ Kg} / \text{m}^2$

Dove : area scanalatura \rightarrow $\mathbf{A}_{sc} = (\underbrace{88,5+61,5}_{2}) \times 55 = 4.125 \text{ mm}^2$ altezza soletta \rightarrow $\mathbf{H}_{s} = 120$ - 55 = 65 mm

Caso 3° - Solaio di copertura a latero-cemento costituito da tralicci, pignatte e soletta in cls.

Il solaio è costituito : \rightarrow da tralicci (del peso pari a $P_{tr} = 0.07 \; KN \, / \, m = 7 \; kg \, / m$) ;

 \rightarrow da pignatte di altezza pari a $H_{pg} = 16 \text{ cm}$;

 \rightarrow da soletta sovrastante di calcestruzzo di spessore pari a $s_{cls} = 4 \text{ cm}$;

Si parla di solai latero-cemento di altezza pari a : $\mathbf{H} = \mathbf{H}_{pg} + \mathbf{s}_{cls} = 16 + 4 = 20 \text{ cm}$

Il peso P vale perciò:

1°) (1 metro lineare)*(num. tralicci)*(peso specifico traliccio) = peso

 2°) (1 metro lineare)*(num. pignatte)*(area di una pignatta)*(peso specifico pignatta) = peso

 3°) (1 metro lineare)*(num. travetti)*(area di una travetto)*(peso specifico travetto) = peso

4°) (1 metro lineare)*(num. soletta)*(peso specifico soletta) = peso

Peso proprio $= 2.35 \text{ KN/m}^2$ oppure = 235 Kg/m²

Si ricordi che : $25 \text{ KN / m}^2 \approx 2.500 \text{ Kg / m}^2$

Dove: altezza travetti \rightarrow $\mathbf{H_t} = 16 - 2.5 = 13.5 \text{ cm}$: area pignatte \rightarrow $\mathbf{A_p} = 16 \times 42 = 672 \text{ cm}^2$: area travetti \rightarrow $\mathbf{A_t} = 13.5 \times 8 = 108 \text{ cm}^2$